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Mach numbers
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This paper discusses self-sustaining oscillations of high-Reynolds-number shear layers
and jets incident on edges and corners at infinitesimal Mach number. These oscillations
are frequently sources of narrow-band sound, and are usually attributed to the
formation of discrete vortices whose interactions with the edge or corner produce
impulsive pressures that lead to the formation of new vorticity and complete a feedback
cycle of operation. Linearized analyses of these interactions are presented in which free
shear layers are modelled by vortex sheets. Detailed results are given for shear flows
over rectangular wall apertures and shallow cavities, and for the classical jet–edge
interaction. The operating stages of self-sustained oscillations are identified with poles
in the upper half of the complex frequency plane of a certain impulse response
function. It is argued that the real parts of these poles determine the Strouhal numbers
of the operating stages observed experimentally for the real, nonlinear system. The
response function coincides with the Rayleigh conductivity of the ‘window’ spanned
by the shear flow for wall apertures and jet–edge interactions, and to a frequency
dependent drag coefficient for shallow wall cavities. When the interaction occurs in the
neighbourhood of an acoustic resonator, exemplified by the flue organ pipe, the poles
are augmented by a sequence of poles whose real parts are close to the resonance
frequencies of the resonator, and the resonator can ‘speak’ at one of these frequencies
(by extracting energy from the mean flow) provided the corresponding pole has
positive imaginary part.

The Strouhal numbers predicted by this theory for a shallow wall cavity agree well
with data extrapolated to zero Mach number from measurements in air, and
predictions for the jet–edge interaction are in excellent accord with data from various
sources in the literature. In the latter case, the linear theory also agrees for all operating
stages with an empirical, nonlinear model that takes account of the formation of
discrete vortices in the jet.

1. Introduction

The sound produced by nominally steady, high-Reynolds-number flow over an
aperture or cavity in a wall often consists of a sequence of discrete tones (see Rockwell
1983 and references cited therein). The relative amplitudes of the tones depend on flow
speed, and can change abruptly between distinct operating ‘stages ’ as the speed varies.
Each stage is associated with a continuous and distinct range of Strouhal number
fL}U, which determines the dominant frequency f, where L is a characteristic
dimension of the aperture or cavity in the flow direction and U is the free-stream speed.
Transitions occur between adjacent stages of higher or lower Strouhal number,
respectively, as the flow speed is increased or decreased (Rossiter 1962; East 1966;
Komerath, Ahuja & Chambers 1987; Ahuja & Mendoza 1995), and the jumps usually
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exhibit hysteresis, where a downward transition occurs at a lower speed than the
corresponding upward jump.

Wall aperture and cavity operating stages are associated with a feedback mechanism
involving the periodic formation of discrete vortices near the leading (upstream) edge
(Rossiter 1962). Each vortex is convected over the opening during a time of order
L}U

c
, at a velocity U

c
that is typically about half the free-stream speed U. An impulsive

disturbance is generated when the vortex reaches the downstream edge which initiates
the formation of a new vortex. The impulse takes a finite timeEL}c

!
to travel back

across the opening, where c
!

is the speed of sound. This naive picture accordingly
implies that the frequency of vortex formation satisfies n}fEL}U

c
L}c

!
, where the

values n¯ 1, 2, 3, etc. correspond to the various operating stages. In practice, it is
necessary to incorporate an additional frequency-dependent time delay in this equation
to account for phase lags introduced by the fluid–structure interactions at the edges
(Rossiter 1962; Heller & Bliss 1975). There are currently no general prediction schemes
for wall aperture operating stages (and according to the vortex sheet models developed
by Mo$ hring (1975) and Durbin (1984), they do not exist), and only limited progress has
been made in the direct numerical simulation at finite Reynolds numbers of unsteady
shear flow over cavities (e.g. Tam & Block 1978; Bruggeman 1987; Bruggeman et al.
1989; Peters 1993; Hardin & Pope 1995; Kriesels et al. 1995).

Feedback also governs the generation of edge tones, produced (in the typical
experimental arrangement) by a thin blade of air emerging from a rectangular orifice
and impinging on a parallel knife-edge (Brown 1937a, b ; Powell 1961; Holger, Wilson
& Beavers 1977, 1980; Lepicovsky & Ahuja 1983; Blake & Powell 1986). Quasi-
empirical models of the jet–edge interaction have been proposed by Curle (1953) and
by Holger et al. (1977) ; the jet was assumed to evolve into a periodic vortex street
whose interaction with the edge can be treated approximately by potential flow theory.
By suitably adjusting the phase between vorticity production and the calculated jet
motion, Holger et al. obtained a formula for the dependence of Strouhal number on
jet thickness that is in good agreement with a broad range of experiments for all of the
observed operating stages (i.e. for n% 4). Crighton (1992) has recently developed an
asymptotic, linear theory in which the jet velocity profile is uniform and the
hydrodynamic wavelength of disturbances on the jet is very much larger than the jet
thickness d, yet small relative to the distance L between the edge and orifice. Crighton’s
analysis leads to a formula for the dependence of Strouhal number on the ratio L}d
and operating stage number n that is functionally equivalent to that given by Holger
et al., although the numerical values of corresponding coefficients in each formula are
considerably different.

Crighton’s (1992) treatment of the jet–edge interaction is the first that does not
depend on the introduction of empirical, adjustable parameters. His Strouhal number
equation for the feedback loop is of the type first proposed by Powell (1961), and
includes complex terms which can be identified with the growth of unstable waves on
the jet and with the algebraic decay of impulsive pressures generated at the edge. It was
asserted, however, that the complex terms must be discarded; that linear theory can
only determine admissible Strouhal numbers from a phase-locking criterion expressed
by the ‘real form’ of the frequency equation. This approach may be contrasted with
that advanced by Howe (1996), who estimated from linear theory the first stage
Strouhal number for wall apertures ; it was argued that the complex form of the
frequency equation should be retained, and that the operating Strouhal numbers
observed in practice for the real, nonlinear flow correspond to the real parts of roots
lying in the upper complex frequency plane. According to this hypothesis, nonlinear



Flow excited tones 63

mechanisms ultimately curtail the unlimited growth in time of the unstable motions,
but have no significant influence on the fundamental (real) frequency. This will be the
case if the convection velocity U

c
is independent of amplitude, which appears to be

generally true in practice (Powell 1961; Holger et al. 1977; Blake & Powell 1986).
In this paper the linear theory proposed by Howe (1996) is refined to determine the

first four operating stages of aperture and shallow-cavity tones, and extension is made
to the jet–edge interaction. In all of these cases the complex frequencies, whose real
parts, we claim, correspond to the Strouhal numbers of possible operating stages, are
identified with the poles of an appropriate impulse response function. For wall
apertures and the jet–edge interaction, this function is the Rayleigh conductivity of the
structural ‘window’ spanned by the shear layer or jet as influenced by the mean flow
(Rayleigh 1945). An asymptotic expression is available for the conductivity of a
rectangular wall aperture of large aspect ratio when the shear layer is modelled by a
vortex sheet, and this is used to obtain a first approximation for the poles in the general
case. The results for the jet–edge interaction are validated by comparison with an
extensive body of data compiled by Holger et al. (1977). Furthermore, by modifying
the empirical nonlinear theory of Holger et al. it is possible to develop a Strouhal
number formula that involves one adjustable constant. When this constant is chosen
to give agreement with the linear theory for any one of the operating stages, it is found
that agreement is maintained for all stages.

Self-sustaining oscillations of flow over an acoustically compact wall cavity have
received relatively little attention in the literature; feedback to the cavity leading edge
from interactions at the trailing edge occurs instantaneously, and the motion within the
cavity is effectively incompressible. For incompressible flow there can be no net
volume flux through the cavity mouth, and the Rayleigh conductivity vanishes
identically. In these circumstances the appropriate impulse response function is the
drag coefficient for small-amplitude unsteady fluctuations in the mean flow over the
cavity. Cavity resonances are determined by complex poles of the drag coefficient, and
the corresponding Strouhal numbers are found to agree well with wall cavity data
extrapolated to zero Mach number.

The paper is organized as follows. The general basis of the theory is outlined in §2
by detailed consideration of the rectangular wall aperture. The jet–edge problem is
formulated and solved numerically in §3, and predictions compared with experimental
data from several sources. An approximate treatment of the nonlinear problem is
discussed (§3.3) and shown to be consistent over all operating stages with linear theory.
A brief outline is given in §3.4 of the modifications necessary when the jet–edge
interactions excite oscillations in a cavity resonator, such as an organ pipe. Finally, in
§4 we investigate the operating stages of tones generated by flow at infinitesimal Mach
number over an acoustically compact wall cavity.

2. Shear tones generated by flow over a rectangular wall aperture

2.1. Criterion for self-sustained oscillations

Consider high-Reynolds-number, one-sided grazing flow at infinitesimal Mach number
over a rectangular aperture in a thin rigid wall. The wall coincides with the plane x

#
¯ 0

of the rectangular coordinate system (x
"
,x

#
,x

$
) with the origin at the geometrical

centre of the aperture. The mean flow is parallel to the x
"
-axis in the ‘upper ’ region

x
#
" 0 with main stream velocity U and uniform mean density ρ

!
(see figure 1). The

sides of the aperture are, respectively, of lengths L and b parallel and transverse to the
mean flow, so that the aperture occupies rx

"
r! s3 "

#
L, rx

$
r! "

#
b. The shear layer over
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F 1. One-sided uniform flow over a rectangular aperture in a thin wall (L¯ 2s).

the aperture is assumed to be linearly disturbed by a uniform, time-dependent pressure
differential [p

!
(t)]3 p

+
(t)®p

−
(t), where p³(t) are uniform pressures applied, re-

spectively, above and below the wall. The resulting volume flux Q(t) through the
aperture is equal to the effective monopole source strength of sound radiated from the
aperture (Pierce 1989), and is determined by the equation

ρ
!
¥Q(t)}¥t¯®&

¢

−¢

K
R
(ω) [p

!
(ω)] e−iωtdω, (2.1)

where K
R
(ω) is the Rayleigh conductivity (Rayleigh 1945), which is a function of the

radian frequency ω, and

[p
!
(ω)]3 (1}2π)&

¢

−¢

[p
!
(t)] eiωtdt

is the Fourier component of [p
!
(t)] of frequency ω.

The conductivity K
R

has the dimensions of length, and in the absence of mean flow,
and when dissipation within the fluid and at boundaries is ignored, is determined by
the shape of the aperture (it is approximately equal to 2¬(aperture area}π)"/# when the
aperture aspect ratio b}LEO(1) (Rayleigh 1945)). Viscous effects cause dissipation
within the aperture, but in the presence of flow viscosity is responsible for the shedding
of additional vorticity from the aperture edges, driven by the interaction of the volume
flux Q with the mean flow. The conductivity K

R
(ω) then becomes complex valued and

strongly dependent on frequency, and the aperture motion may be unstable, its
amplitude growing by extracting energy from the mean flow. These instabilities
correspond to singularities of K

R
occurring at complex values of ω.

It may always be assumed that the applied pressure differential [p
!
(t)] vanishes for

t! t
!
, say, and is non-zero only within some finite interval of time, so that [p

!
(ω)] is

regular in the whole of the complex frequency plane, and vanishes as rωrU¢. Then the
causal response of the aperture flux to the applied pressure is calculated from (2.1) by
requiring the path of integration to pass above any singularities of K

R
(ω). For t" t

!
the integral is evaluated by displacing the path downwards towards the real axis,
thereby capturing contributions from any singularities of K

R
(ω) in Imω" 0. According

to linear theory, these contributions (if they exist) will grow exponentially with t®t
!
,
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and eventually dominate Q(t). In particular, a pole in the upper frequency plane will
initiate an oscillatory motion of fixed frequency whose amplitude increases
exponentially. Nonlinear mechanisms will prevent unlimited growth, but will not
necessarily significantly change the frequency of the oscillations, since this is determined
for both the linear and nonlinear cases by the convection velocity of vortical
disturbances past the downstream edge of the aperture, which experiments suggest to
be hardly influenced by vortex strength (Powell 1961; Holger et al. 1977; Blake &
Powell 1986).

We shall therefore interpret the real parts of poles of K
R
(ω) in the upper half-plane

as the frequencies of possible self-sustaining oscillations. In most of the cases treated
in this paper K

R
(ω) (and the drag coefficient of §4) is determined by numerical

integration, and the existence of singularities other than poles remains an open
question. It seems likely, however, that the basic physical mechanism governing the
oscillations of all these systems will not differ substantially from that for the wall
aperture, for which we can prove that all singularities are poles when the aspect ratio
b}L( 1.

2.2. The Rayleigh conducti�ity

The equations determining the conductivity K
R

of a rectangular aperture are discussed
by Howe, Scott & Sipcic (1996), and it will suffice here to give only those details that
are needed in §3 to study the jet–edge interaction.

For high-Reynolds-number flow, the shear layer over the aperture is replaced by a
vortex sheet, and we consider time-harmonic excitation of the sheet by a uniform
pressure differential [p

!
(ω)] e−iωt. Let ζ(x

"
,x

$
) e−iωt denote the displacement of the vortex

sheet (in the x
#
-direction) from its undisturbed position x

#
¯ 0. At very low Mach

numbers the local motion may be regarded as incompressible ; the linearized
perturbation pressures above and below the plane are then given by

p¯ p
+
®ρ

!0ωiU
¥

¥x
"

1#&
S

ζ(y
"
, y

$
)

2πrx®yr
dy

"
dy

$
(x

#
" 0), (2.2a)

p¯ p
−
ρ

!
ω#&

S

ζ(y
"
, y

$
)

2πrx®yr
dy

"
dy

$
(x

#
! 0), (2.2b)

where y¯ (y
"
, 0, y

$
), the integration is over the area S of the aperture, and the

exponential time factor e−iωt is here and hereinafter suppressed. The equation of
motion of the vortex sheet is obtained by equating these pressures at its undisturbed
position, yielding

90ωiU
¥

¥x
"

1#ω#: &
S

ζ(y
"
, y

$
)

2πrx®yr
dy

"
dy

$
¯ [p

!
]}ρ

!
(x

#
¯ y

#
¯ 0), (2.3)

where x3 (x
"
, 0,x

$
) is within S.

To simplify this equation, assume that vortex shedding from the leading edge
(x

"
¯®s) produces strongly correlated motion of the vortex sheet at different

transverse positions x
$
, and ζ may therefore be assumed to be independent of x

$
. By

explicitly performing the integrations with respect to y
$

and x
$
, we can then write

9σ#0σi
¥
¥ξ1

#: &"

−"

ζ(η) ²ln rξ®ηr,(ξ, η)´dη¯®πs[p
!
]}ρ

!
U # (rξr! 1), (2.4)

where
σ¯ωs}U, ξ¯x

"
}s, η¯ y

"
}s,
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and

,(ξ, η)¯®ln ²b}s[(b}s)#(ξ®η)#]"/#´[1(s}b)# (ξ®η)#]"/#®(s}b) rξ®ηr.

(2.5)

Inversion with respect to the second-order differential operator in ξ yields the
integral equation

&"

−"

ζa(η) ²ln rξ®ηr,(ξ, η)´dηλ
"
exp (iσ

"
ξ )λ

#
exp (iσ

#
ξ )¯ 1 (rξr! 1),

(2.6)

where σ
"
¯ (ωs}U ) (1i), σ

#
¯ (ωs}U ) (1®i) are the Kelvin–Helmholtz wavenumbers

for time harmonic disturbances of the vortex sheet, λ
"

and λ
#

are constants of
integration, and ζa ¯®(2ρ

!
ω#s}π[p

!
]) ζ.

This equation can be solved by collocation, as described by Scott (1995) for a vortex
sheet over a circular aperture. The constants λ

"
and λ

#
are determined by imposing the

Kutta condition ζ¯ ¥ζ}¥ξ¯ 0 at the upstream edge ξ¯®1 (Crighton 1985).
Conditions at the downstream edge (ξ¯ 1) must remain unspecified, but potential
theory requires that the displacement exhibit an integrable, inverse square-root
singularity, which must be interpreted as the linear theory manifestation of the large-
amplitude edge motion observed in experiments. The Rayleigh conductivity is then
evaluated from the time-harmonic form of (2.1), by means of

K
R

¯®"

#
πb&"

−"

ζa(η) dη. (2.7)

The integral is a function of the dimensionless frequency σ and the aspect ratio b}L.

2.3. Poles of K
R
(ω)

When b}L( 1, it follows from (2.5) that ,(ξ, η)E®ln ²2b}s´. Equation (2.6) can then
be solved explicitly, and (2.7) yields (Howe et al. 1995)

K
R

¯
πbF

"
(ω)

2²F
#
(ω)ΨF

"
(ω)´

, (2.8)

where
F
"
(ω)¯σ

"
W(σ

#
) [J

!
(σ

"
)®2W(σ

"
)]®σ

#
W(σ

"
) [J

!
(σ

#
)®2W(σ

#
)],

F
#
(ω)¯®σ

"
J
!
(σ

#
) [J

!
(σ

"
)®2W(σ

"
)]σ

#
J
!
(σ

"
) [J

!
(σ

#
)®2W(σ

#
)],

Ψ¯ ln (8b}eL), W(x)¯ ix[J
!
(x)®iJ

"
(x)],

5

6

7

8

(2.9)

J
!

and J
"

are Bessel functions, and eE 2±718 is the exponential constant.
The Bessel functions are regular everywhere, and the singularities of K

R
defined by

(2.8) are plainly simple poles. Now (2.1) implies that K
R
(®ω*)¯K$

R
(ω), where the

asterisk denotes complex conjugate, and this permits the search for poles in Imω" 0
to be confined to the first quadrant. An approximate formula determining these poles
is obtained by considering the asymptotic forms of F

"
and F

#
as rσrU¢, since it is

expected that rσr" 1 even for the first operating stage:

σ¯ "

%
π(2n1) (1i)501®

ln ²[(4σ®i)Ψ2i]}[1®(1®i)Ψ}4]´
2σ(1i) 1 (n¯ 1, 2, 3,…),

(2.10)

This indicates that the poles ultimately lie along a ray making an angle of 45° with the
real axis, and that successive real and imaginary parts of σ3ωs}U differ by about "

#
π.

A more precise determination of the poles is obtained by partitioning the first quadrant
into a sequence of rectangles with sides of lengths l

R
, l

I
(with l

I
! "

#
π) respectively
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F 2. Dependence of the first stage pole on aspect ratio b}L (L¯ 2s) for a rectangular aperture
in a thin wall : ——, determined by the numerical solution of equation (2.6) ; ————, determined
from the asymptotic formula (2.8).

parallel to the real and imaginary axes. By trial and error l
R

is taken to be sufficiently
large to ensure that a pole is contained within the rectangle. This is done by defining
F(ω)3F

#
(ω)ΨF

"
(ω), and evaluating the integral Iγ ¯ (1}2πi) #γ dF(ω)}F(ω) around

the boundary γ of the rectangle; Iγ is the number of poles of K
R
(ω) (zeros of F(ω))

within γ (Titchmarsh 1952). The position of a pole is found to any degree of
approximation by repeated subdivision of the rectangle into two equal parts followed
by the evaluation of Iγ around the boundary of one of the parts. Further refinement
is achieved by the Newton–Raphson method.

The broken curve in figure 2 depicts the locus of the first stage pole σ3ωs}U of the
asymptotic formula (2.8) with varying aspect ratio b}L. Only predictions for b}L( 1
are correctly given by (2.8). For arbitrary values of the aspect ratio the poles must be
determined from the zeros of 1}K

R
(ω), where K

R
is given by (2.7) from the numerical

solution of the integral equation (2.6). This is efficiently accomplished by Newton–
Raphson iteration, by marching from, say, b}L¯ 100, taking as a first
approximation the corresponding pole of (2.8). The solid curve in figure 2 illustrates
how the first stage pole calculated in this way varies with aspect ratio. The results of
similar calculations performed for stages 2–4 are given in figure 3(a) (predictions using
the asymptotic formula (2.8) are omitted). The real parts of the frequencies for the first
four stages, expressed as a Strouhal number fL}U3Re (ωs}πU ), are plotted in figure
3(b) as a function of b}L. For each stage the Strouhal number decreases very slowly
with increasing aspect ratio, and the Strouhal numbers of successive stages differ by
about "

#
.

When b}LU¢, poles satisfying rσr( 1 are determined by the limiting form of (2.10)
as ΨU¢, which can be written

8o2σ exp (®i(2σ
#
®"

%
π))¯ 1, (2.11)

where σ
#
¯σ(1®i) is the (non-dimensional) wavenumber of hydrodynamic disturb-

ances of the vortex sheet that grow exponentially with distance from the leading
edge of the aperture. This equation is of the type proposed by Powell (1961) for self-
sustaining oscillations controlled by feedback, and expresses the condition that the net
change of phase around the loop should be a multiple of 2π and that there should be
no gain in amplitude (the exponential growth of the instability wave being balanced by
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F 3. (a) Locus of the instability poles in stages 2–4 for a rectangular aperture in a thin rigid wall
calculated from the numerical solution of equation (2.6). (b) Predicted dependence of the Strouhal
number on aspect ratio (L¯ 2s).

an algebraic decay like 1}σ of the impulse arriving back at the leading edge from the
interaction of the wave with the downstream edge). An analogous equation was given
by Crighton (1992) for jet–edge interactions. However, contrary to the approach of the
present paper, Crighton argued that linear theory requires σ to be real, and that it is
possible to satisfy only the phase condition of (2.11), in which case

σ3ωs}UEπ(n"

)
)

in the nth operating stage. This result implies that successive Strouhal numbers fL}U
differ by 1, twice the amount predicted by (2.10) (as rσrU¢) and the numerical results
of figure 3.

Mo$ hring (1975) and Durbin (1984) have considered a vortex-sheet model of aperture
flow for the two-dimensional case b}LU¢, subject to the condition that the motion
of the sheet remains finite at the trailing edge. They concluded that there are no real
resonance frequencies. Howe (1981) argued that their model is unrealistic, because it
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predicts stable motion for all real frequencies and, in particular, implies that the shear
flow would be incapable of exciting acoustic modes in an adjacent cavity, contrary to
observation (see §3.4 below).

3. Theory of edge tones

3.1. Linear, thin jet theory

Let the edge tones be generated by a low-Mach-number stream of air issuing at mean
velocity U from a thin-walled rectangular duct of height d and width b, where b( d
(figure 4). The duct is located symmetrically within a semi-infinite rectangular slot of
equal width in the rigid plane x

#
¯ 0, with its open end a distance L3 2s from the

transverse edge of the slot, upon which the jet impinges. The coordinate origin is taken
on the centreline of the jet, midway between the orifice and the edge, with the x

"
-axis

in the flow direction, so that the edge is at x
"
¯ s, rx

$
r! "

#
b.

By analogy with the aperture resonances discussed in §2, the frequencies of self-
sustained oscillations of the jet (in the x

#
-direction) are identified with poles of the

Rayleigh conductivity of the ‘window’ rx
"
r! s, rx

$
r! "

#
b connecting the ‘upper ’ and

‘ lower’ fluid regions. The wavelength of disturbances on the jet is assumed to be much
larger than the thickness d, so that the jet displacement ζ in the x

#
-direction may be

assumed to be independent of x
#
. The linearized equation describing sinuous motions

of the jet is then

ρ
!
d
D#ζ

Dt#
¯®[p] (rx

"
r! s, rx

$
r! "

#
b), (3.1)

where [p] is the net difference in the pressures on the upper and lower surfaces
(x

#
E³"

#
d ) of the jet, and D}Dt¯ ¥}¥tU¥}¥x

"
. The gradual increase in jet thickness

d across the window is neglected.
As before, we confine attention to motions that can be regarded as incompressible

in the vicinity of the jet. If p³ are uniform, time harmonic pressures imagined to be
applied to the fluid in the neighbourhood of the window in the upper and lower
regions, respectively, the net perturbation pressures in x

#
>³"

#
d for use in (3.1) can be

expressed in forms similar to equation (2.2b), where the integrations are over the planes
y
#
¯³"

#
d, including the sections ry

$
r" "

#
b of these planes to the sides of the main jet

stream. When d is much smaller than either b or L, the pressures on the upper and
lower surfaces of the jet may be approximated by setting ζ3 0 outside the window. If,
in addition, the dependence of ζ on the transverse coordinate x

$
is also neglected (as

in §2) these surface pressures are given by

p¯ p³yρ
!
ω#&

S

ζ(y
"
)

2πrx®yr
dy

"
dy

$
(rx

"
r! s, x

#
¯ y

#
¯³"

#
d, rx

$
r! "

#
b), (3.2)

where S is the region ry
"
r! s, ry

$
r! "

#
b. This equation ignores possible contributions

from the unsteady motions downstream of the edge (x
"
¯ s) which, for a thin, weakly

perturbed jet, would be expected to be significant only near the edge. Their effect could
be approximated by introducing displacement thickness waves (Crighton 1992), but
such a refinement does not alter the conclusions of the present calculation, and will be
ignored.

Substituting for the pressure in (3.1), and proceeding as in §2.2, the equation of
motion reduces to

0σi
¥
¥ξ1

#

ζ®
2σ#s

πd &
"

−"

ζ(η) ²ln rξ®ηr,(ξ, η)´dη¯
s#[p

!
]

dρ
!
U #

, (3.3)
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F 4. Thin, rectangular jet impinging on an edge (L¯ 2s).

where ξ¯x
"
}s, η¯ y

"
}s,,(ξ, η) is given by (2.5), and [p

!
]¯ p

+
®p

−
. Crighton (1992)

imposed the Kutta condition at the upper and lower edges of the jet orifice
(x

"
¯®s,x

#
¯³"

#
d ). In the present thin jet approximation, the Kutta condition must

be taken to imply the simpler condition that ζ¯ ¥ζ}¥ξ¯ 0 as ξU®1.
Equation (3.3) can be integrated with respect to the second-order differential

operator on the left-hand side by introducing the Green’s function

G(ξ,λ)¯®H(ξ®λ) (ξ®λ) eiσ(ξ−λ),

which is a solution of (σi¥}¥ξ)#G¯ δ(ξ®λ), where H is the Heaviside unit function.
Then ζa 3 (ρ

!
ω#d}[p

!
]) ζ satisfies the integral equation

ζa(ξ )&"

−"

K(ξ, η) ζa(η) dη²λ
"
λ

#
ξ ) eiσξ ¯ 1 (rξr! 1), (3.4)

where σ¯ωs}U,

K(ξ, η)¯
2sσ#

πd &
ξ

−"

(ξ®λ) ²ln rλ®ηr,(λ, η)´ eiσ(ξ−λ)dλ, (3.5)

and λ
"
and λ

#
are integration constants chosen to ensure that ζa ¯ ¥ζa}¥ξ¯ 0 as ξU®1.

In terms of these definitions, the Rayleigh conductivity is given by

K
R
(ω)}b¯

s

d&
"

−"

ζa(ξ ) dξ. (3.6)

The result of a typical calculation for real values of the frequency ω is illustrated in
figure 5, where the real and imaginary components Γ

R
and ∆

R
of K

R
(ω)}b3

Γ
R
(ω)®i∆

R
(ω) are plotted against σ¯ωs}U for L}d¯ 20, b}L¯ 0±5. The general

shapes of these curves are qualitatively the same as those discussed by Howe et al.
(1996) for the conductivity of circular and rectangular apertures spanned by a vortex



Flow excited tones 71

6

4

2

0

–2
C

on
du

ct
iv

it
y/

b
0 1 2 3

¡R

DR

xs/U

F 5. Rayleigh conductivity K
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(ω) for a thin jet–edge interaction

when L}d¯ 20, b}L¯ 0±5 (L¯ 2s).
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F 6. Dependence on L}d (L¯ 2s) of the real part of the stage one pole of the jet–edge
interaction for different aspect ratios b}L : E, prediction of (3.4) ; the straight lines are best fits of the
formula (3.7) for L}d" 20.

sheet, where it was shown that mean flow kinetic energy is extracted by the applied
pressure differential [p

!
] when ∆

R
(ω)! 0. In figure 5 this occurs for 0±87!ωs}U! 2.3.

3.2. Calculation of edge-tone frequencies

The Kramers–Kronig relations can be applied (in the manner described in detail by
Howe et al. 1996) to the real and imaginary parts of K

R
depicted in figure 5 for real

frequencies to confirm that K
R
(ω) has singularities in the upper complex-frequency

plane. An extension of this method was made by Howe (1996) to obtain an
approximate analytic continuation of K

R
from the real axis and thereby estimate the

location of the stage one pole for a wall aperture. The same procedure is applicable to
jet–edge interactions, and supplies a first approximation to the first stage pole which
can then be used in conjunction with the numerical solution of (3.4) and the definition
(3.6) to obtain an improved approximation by Newton–Raphson iteration.

This calculation has been performed for 5!L}d! 50, for different fixed values of
the ‘window’ aspect ratio b}L. Typical results are illustrated in figure 6 by the solid
points in the log–log plot of Re (ωs}U ) against L}d for the first stage pole when
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F 7. Predicted dependence on L}d (L¯ 2s) of the two-dimensional, jet–edge
interaction poles for the first four operating stages.

b}L 0±5 10 500

α 2±32 1±89 1±76

T 1

b}L¯ 0±5 and 10. For fixed b}L, the points are colinear when L}d is large, and the
solid lines in the figure are rectilinear approximations defined by the general formula

fL}U¯α(d}L)"/# (L}d( 1), (3.7)

where f3Re ²ω}2π´, and the coefficient α is given in table 1 for three values of b}L.
Formulae similar to (3.7) were obtained by Holger et al. (1977) and by Crighton (1992)
from considerations of two-dimensional models of the unsteady jet motion,
corresponding to b}LU¢. When b}L becomes large the stage one pole tends to a
limiting value whose real part varies with L}d in the manner indicated by the broken
straight line in figure 6 (calculated from (3.4) by setting b}L¯ 500).

Figure 7(a) shows the dependence of both the real and imaginary parts of the first
stage pole σ¯ωs}U on L}d when b}L¯ 500, which we shall hereinafter refer to as the
‘ two-dimensional ’ limit. Re (σ) and Im (σ) are of the same order of magnitude, which
suggests that the real and imaginary parts of the poles of successive higher-order stages
will differ roughly by about "

#
π (as for the wall aperture). This observation facilitates

the numerical determination of these poles, whose dependencies on L}d are shown in
figures 7(b)–7(d ) for stages two to four.

Holger et al. (1977) have compiled experimental data from several sources giving the
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dimensional jet–edge interactions with representative averages of data from Holger et al. (1977). The
broken lines are predictions of (3.18).
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F 9. Discrete vortex model of the jet–edge interaction.

dependence of Strouhal number on L}d for the first four operating stages (the only
ones observed in practice). Representative averages of this data are plotted as solid
circles and squares in figure 8; any significant spread about the average is indicated by
a vertical bar through a data point. The solid curves are predictions of fL}U3
Re (ωs}Uπ) from figure 7 (for the ‘ two-dimensional ’ interaction), which are in
excellent agreement with experiment except perhaps for stage 1, where the data are
confined to the region L}d! 10, and where the validity of thin jet theory is
questionable.

3.3. Compatibility of linear and nonlinear theories

Additional support for the predictions of §3.2 is obtained from a comparison with a
nonlinear theory proposed by Holger et al. (1977). The jet is assumed to evolve into a
fully developed street of vortices of alternating sign convecting towards the edge at
constant speed U

c
(figure 9), which is in rough accord with experiment provided the
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Reynolds number Ud}ν (ν being the kinematic viscosity) is smaller than about
2000–3000. In a locally two-dimensional approximation, the vortex street is represented
by line vortices of circulations ³Γ (Γ" 0), with vorticity distribution

Ω(x, t)E 3
¢

n=−¢

Γ(δ(x
#
®"

#
a) δ[x

"
s®U

c
(t®n}f )]

®δ(x
#
"

#
a) δ[x

"
s®U

c
²t®(n"

#
)}f ´])k (x

"
"®s, rx

$
r! "

#
b), (3.8)

where a is the vertical distance between the two rows of vortices, λ3U
c
}f is the

distance between neighbouring vortices in the same row, f is the fundamental frequency
of the motion, and k is a unit vector in the x

$
-direction (out of the plane of the paper

in figure 9). According to (3.8) the nth vortex in the upper row appears spontaneously
in the neighbourhood of the jet orifice at time t¯ n}f and proceeds to drift towards the
edge at constant speed U

c
, although in practice the vortices actually form between one

and three hydrodynamics wavelengths downstream.
Careful measurements in water (Brown 1937a, b ; Holger et al. 1977) indicate that

a}λE 0±5, U
c
}UE 0±945( fd}U )"/$. (3.9a, b)

The second of these relations is also obtained by equating the momentum flux of the
jet at the orifice to that of the vortex street (Holger et al. 1977) ; the usual formula for
the translational velocity of the street (Lamb 1932) then yields

Γ}UdE 1±95}( fd}U )"/$. (3.10)

To use this model to calculate the Strouhal number fL}U of each operating stage,
the interaction of the vortex street with the edge must be related to the formation of
the vortices. Let �

#
denote the x

#
-component of the perturbation velocity produced on

the jet axis near the orifice by this interaction. Suppose there exists a phase lag 2πθ
between the formation of a vortex in the upper row of the street and the beginning of
the half-cycle during which �

#
is positive. Then for the fundamental mode of frequency

f we can then write
�
#
¯ �

!
sin [2π( ft®θ)], (3.11)

where �
!
" 0 does not depend on time. This velocity must be determined by the

interaction with the edge of the corresponding Fourier component of the vorticity
(3.8), which can be written

Ω(z, f )¯
2Γf

U
c

(δ(x
#
®"

#
a)δ(x

#
"

#
a)) cos [2πf ²t®(x

"
s)}U

c
´]k, z¯x

"
ix

#
.

(3.12)

The velocity potential } (z, f ) associated with the vorticity Ω(z, f ) can be evaluated by
the conformal transformation Z¯Z(z) of the z-plane, cut along rays corresponding to
the upper and lower walls of the jet duct and the edge, onto Im (Z )" 0, and formally
expressed as the integral

} (z, f )¯Re 0®i

2π&Ω(z«, f ) [ln ²Z(z)®Z(z«)´®ln ²Z(z)®Z*(z«)´] dy
"
dy

#1 , z«¯ y
"
iy

#
.

(3.13)

Now the experimental data shown in figure 8 suggests that 2πfL}U
c
( 1 for all

operating stages. The value of this integral is therefore dominated by contributions
from the vicinities of z«¯³s, where Z(z«) is respectively singular and close to
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singularities, and can be estimated by expanding the term in the square brackets of the
integrand about these points (see, e.g. Lighthill 1958). However, the vorticity (3.12) is
a proper representation of the flow only near z«¯ s ; discrete vortices are not present
near the orifice, where the motion must actually by smooth in accordance with the
Kutta condition. The irrotational velocity �

#
near the orifice produced by the

interaction of the jet with the edge is therefore correctly estimated by including only
those contributions to the integral from the vicinity of z«¯ s, which is easily done when
2πfL}U

c
( 1. Furthermore, near z¯ s, and when L( d, the transformation Z(z) may

be approximated by
Z¯ z}s(z#}s#®1)"/#, (3.14)

which maps the z-plane cut along the real axis from ³s to ³¢ onto Im (Z )" 0.
It may be verified by direct calculation that in order to calculate the phase of �

#
near

the jet orifice, it is sufficient to take a¯ 0 in the delta-functions of (3.12), since a non-
zero value of a affects only the amplitude. Thus, in (3.13) we expand Z(z«) given by
(3.14) about z«¯ s, and for z near the orifice and d'L,Z(z) (given by the same
formula) is expanded about the jet orifice at z¯®s, to obtain

�
#
E

Γ

4π#( fs}U
c
)"/# (s#®x#

"
)"/#

sin [2πf(t®L}U
c
)"

%
π]. (3.15)

Comparing this with (3.11), it follows that

fL}U
c
¯ n"

)
θ,

for integer values of n, and equation (3.9b) then implies that the Strouhal number
stages are given by

fL}UE 0±92(d}L)"/# (n"

)
θ)$/# (n¯ 1, 2, 3,…). (3.16)

A formula of this type which agrees well with the data of figure 8 was given by
Holger et al. (1977) where, however, the phase θ was required to be a function θ

n
of

the stage number n, namely, θ
"
¯ 0±275, θ

#
¯ 0±225, θ

$
¯ 0±375. Crighton’s (1992) linear

theory yields the following equation for the Strouhal number (analogous to equation
(2.11) for the wall aperture) :

4π(SL}d ) exp (®2i[(L}d)S#/$ e−iπ/$®&

)
π])¯ 1, (3.17)

where S¯ωd}2U. According to Crighton, S must be regarded as real and determined
by equating the phase of the left-hand side to an integral multiple of 2π. This also yields
equation (3.16), but with the factor 0±92 replaced by 5±01 and with θ¯®"

#
. Thus,

Crighton’s formula has the correct formal structure, in particular it predicts the correct
dependence of Strouhal number on d}L, but it greatly overestimates the interstage
jumps, and the Strouhal numbers for n¯ 1 are about 60% too large.

If the alternative hypothesis of the present paper is applied to (3.17) it is more
usefully expressed as the following equation for the complex frequency σ3ωs}U of
successive operating stages,

σ¯
πi(d}L)"/# ²π(n®3}8)´$/#

[1®exp (5πi}6) ln (4πσ)}²2(L}d )σ#´"/$]$/#
(n¯ 1, 2, 3,…).

However, the solutions of this equation yield totally unacceptable Strouhal numbers
fL}U3Re (σ}π)! 0.

The argument of §2.1 implies that Strouhal numbers predicted by linear and
nonlinear theories should be the same, and therefore that (3.16) should be consistent
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with the theory of §3.2. According to figure 6, the first stage Strouhal number is given
approximately by fL}U¯α(d}L)"/# when L}d is large, where α is constant, and the
solid curves in figure 8 indicate that the same conclusion is approximately true for the
higher-order predictions. The asserted equivalence of linear and nonlinear theories
therefore requires that α3 0±92(n"

)
θ)$/# for a unique value of the phase shift θ.

When θ is chosen to make linear and nonlinear theories agree for n¯ 1 (by taking
α¯ 1±76, from table 1) we find θE 0±42, and (3.16) becomes

fL}UE 0±92(d}L)"/# (n0±54)$/#. (3.18)

Predictions of this formula (the dashed lines in figure 8) agree precisely with linear
theory in the thin jet limit L}d( 1. The conclusion that θE 0±42 implies that a vortex
in the upper shear layer of the jet may be regarded as released from the orifice shortly
before the cross-velocity �

#
goes negative.

3.4. Edge tones coupled to a resonator

The complex poles of the Rayleigh conductivity generally do not determine the tones
generated when the jet–edge interaction occurs in the neighbourhood of the mouth of
a large cavity resonator. This can be seen by consideration of the idealized model of
a flue organ pipe depicted in figure 10, consisting of a uniform pipe of length l and
rectangular cross-section h¬b (the transverse dimension b being into the paper in the
figure) open at both ends. Acoustic resonances of the pipe are excited by a nominally
steady, thin jet of air from the flue impinging on the sharp edged labium. The distance
L between the flue exit and the edge is very much smaller than the pipe length l, and
is usually smaller than the cross-sectional dimensions h and b. In the thin jet
approximation (3.1), an integral equation of motion of the jet is easily derived in a form
similar to (3.4) with account taken of the local geometry of the mouth. The numerical
predictions from this equation of the conductivity of the mouth in the presence of the
jet are qualitatively the same as for the jet–edge ‘window’ of figure 4, and it will
therefore suffice to refer, where necessary, to explicit results given previously for this
simpler case.

The resonance frequencies of the organ pipe are found by equating to zero the
acoustic impedance of the mouth (Pierce 1989). This may be broken down into two
components, one representing the impedance of the mouth as influenced by the jet
(whose reciprocal is the Rayleigh conductivity) and the second being the effective
impedance of the pipe at a point just within the mouth in the absence of the jet. The
reciprocal of the latter may be termed the Rayleigh conductivity K

c
, say, of the pipe

cavity entrance, and includes the influence of acoustic modes within the pipe and the
radiation of sound into the ambient fluid. For the pipe of figure 10, open at both ends,
it is given approximately by

K
c
¯ 1}(iκ

!
}4πtan ²k(ll «iκ

!
A}4π)´}kA),
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where κ
!
¯ω}c

!
is the acoustic wavenumber (c

!
being the speed of sound), A¯ hb is

the cross-sectional area of the pipe, and l « is the ‘end correction’ at the remote open
end (at x

"
¯ l, say). The wavenumber k¯ κ

!
iα

!
, where α

!
" 0 is a correction that

accounts for boundary-layer losses at interior walls of the pipe.
If K

R
denotes the conductivity of the mouth in the presence of the jet (defined for

incompressible flow as in §2.1), the net impedance of the mouth is 1}K
R
1}K

c
. In

general, this has complex zeros in Im (ω)" 0 near the poles of K
R
(ω) that determine the

Strouhal numbers of the free jet–edge interaction. In addition, however, there exist
zeros close to the poles of K

c
; they are near the real axis, and correspond to acoustic

modes in the pipe as modified by the jet. For the lower-order pipe modes they satisfy

sin (k[ll «A²1}K
R
iκ

!
}2π´])¯ 0.

The magnitude of K
R

is comparable to b, and this equation is valid provided
A}K

R
lC h}l' 1, which is usually the case in organ pipes and recorder-like

instruments. The solutions are given approximately by

ω(ll «)}c
!
E nπ(1®i(α

!
}κ

!
)®[A}(ll «)] [1}K

R
iκ

!
}2π]) (n¯ 1, 2, 3,…),

where the right-hand side is evaluated at ω(ll «)}c
!
¯ nπ. Acoustic oscillations will be

self-sustained (extracting energy from the jet), and the pipe will ‘ speak’, provided

Im (1}K
R
)!®κ

!
}2π®[(ll «)}A] (α

!
}κ

!
) at ω(ll «)}c

!
¯ nπ. (3.19)

This is the linear theory condition that power supplied to the oscillations by the jet
exceeds that dissipated by radiation from the ends of the pipe and by interior
boundary-layer losses. Referring to figure 5, self-excitation can only occur when
σ3ωs}U lies within the interval where the imaginary component of the conductivity
∆

R
! 0. Since ωE nπc

!
}(ll «), the pipe can speak at this frequency provided the

inequality (3.19) can be satisfied in a subinterval of the range of σ wherein ∆
R

! 0, and
(3.19) therefore determines the jet velocity interval (if any) within which oscillations are
possible (see Howe (1981) for an example of this type of calculation).

4. The shallow wall cavity

Turn attention now to the estimation of the resonance frequencies of a shallow,
acoustically compact, rectangular wall cavity (‘cut-out ’) of the type illustrated in
profile in figure 11(a). This subject has an extensive literature for cases of finite mean
flow Mach numbers M3U}c

!
(typically greater than about 0±2) because of its

relevance to vibration problems experienced by exposed aircraft structures (Rossiter
1962; Tam & Block 1978; Ahuja & Mendoza 1995). Theoretical progress has been
limited, however, and none of the existing models is applicable at infinitesimal Mach
number, when the depth l is very much smaller than the acoustic wavelength
(Burroughs & Stinebring 1994).

Let the cavity have dimension L (3 2s) in the mean stream direction and b in the
transverse direction (out of the plane of the paper in figure 11a), and take the
coordinate origin in the centre of the cavity mouth. At very small Mach numbers the
acoustic pressure at large distances from the cavity is given by

p(x, t)E
ρ
!

2πrxr
¥
¥t&

¢

−¢

�
#
(y, t®rx®yr}c

!
) dy

"
dy

$
as rxrU¢. (4.1)

As the frequency of the sound becomes very small (smaller than the Helmholtz
resonance frequency (Pierce 1989)), the motion within the cavity may be regarded as
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F 11. (a) Rectangular wall cavity. (b) Real and imaginary parts of the drag coefficient D(ω)
defined by (4.3) for real ω when the cavity aspect ratio b}L¯ 1 (L¯ 2s).

incompressible, and the net volume flux Q through the mouth vanishes. The cavity
must therefore radiate as a dipole, rather than a monopole, whose pressure field is
determined by the first non-zero term in the expansion of the integrand of (4.1) in
powers of y}c

!
:

p(x, t)E
x
j

2πc
!
rxr#

¥F
j

¥t
(t®rxr}c

!
) (rxrU¢),

where

F
j
¯ ρ

!&
¢

−¢

y
j

¥�
#

¥t
(y, t) dy

"
dy

$
( j¯ 1 or 3). (4.2)

F is just the unsteady force exerted on the fluid, and F
"

is the drag.
In steady flow (when Q3 0) a cavity drag cannot be induced by a uniform, time-

dependent pressure p
!
(t) applied (in x

#
" 0) above the cavity. Instead, it is necessary to

excite the cavity shear layer by a uniform, tangential pressure force ®¥p
!
}¥x

j
. If this

is applied in the mean flow direction (the x
"
-direction), then F3 (F

"
, 0, 0), and by

analogy with (2.1) we can write, for linearly disturbed motion of the shear layer,

F
"
(t)¯®&

¢

−¢

D(ω) ¥p
!
(ω)}¥x

"
e−iωtdω, (4.3)

where D(ω) is a suitable drag coefficient. The frequencies of possible self-sustained
radiation from the cavity correspond to poles of D(ω) in Im (ω)" 0.

Approximate the high-Reynolds-number shear layer over the mouth by a vortex
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sheet, whose displacement ζ from x
#
¯ 0 is independent of the transverse coordinate x

$
.

Then (4.2) and the definition (4.3) imply that

D(ω)¯
ρ
!
ω#b

p!

!
(ω) &

s

−s

y
"
ζ(y

"
) dy

"
, (4.4)

where ζ(y
"
) here denotes the displacement produced by the uniform time harmonic

pressure gradient p!

!
(ω)3 ¥p

!
(ω)}¥y

"
.

To simplify the analysis we shall examine in detail the case where l(L ; this
enables the base of the cavity to be ignored in calculating the motion of the vortex
sheet. To do this we first perform the calculation for a compressible fluid within the
cavity, when Q1 0, and obtain the solution for incompressible flow by considering the
limit ωl}c

!
U 0. When ωl}c

!
is small, motion of the sheet may be assumed to excite

acoustic depth modes within the cavity, which vary only with x
#
. By imposing the

condition that the normal velocity must vanish at the base x
#
¯®l, and when interior

boundary-layer losses, etc. are neglected, the depth mode pressure p
−

near the mouth
of the cavity may then be shown to be given by (Pierce 1989)

p
−
¯®i(ρ

!
c
!
Q}A) cot (κ

!
l ), (4.5)

where A¯ bL is the cross-sectional area and κ
!
¯ω}c

!
. When the local motion near the

vortex sheet is regarded as incompressible (as before), the small influence of radiation
damping can be incorporated by taking the mean pressure above the cavity to consist
of p

!
(which varies linearly in the mean flow direction) plus a uniform pressure

ωκ
!
ρ
!
Q}2π, which vanishes as c

!
U¢ (the incompressible limit) and corresponds to

the first compressible term in the expansion of (4.1) in powers of ωrxr}c
!
. Thus, we can

write
p
+
¯x

"
p!

!
ωκ

!
ρ
!
Q}2π, (4.6)

where, without loss of generality, it has been assumed that p
!
¯ 0 at x

"
¯ 0.

In the disturbed state the net pressure above the vortex sheet is given by the first of
the general equations (2.2). When ζ does not depend on the spanwise variable y

$
, the

pressure on the upper surface of the vortex sheet averaged over the span, can be written

p¯ p
+


ρ
!
U #

πs 0σi
¥
¥ξ1

#&"

−"

ζ(η) ²ln rξ®ηr,(ξ, η)´dη (rξr3 rx
"
}sr! 1), (4.7)

where the notation is the same as in §§2, 3 and ,(ξ, η) is defined as in (2.5).
Similarly, since ζ does not depend on x

$
, the incompressible motion induced by the

vortex sheet in the cavity just below the sheet can be determined by conformal
transformation, by expressing it as an integral involving the potential of a line source
injecting fluid into a semi-infinite, uniform duct. The net pressure on the lower face of
the vortex sheet is then found to be given by

p¯ p
−
®

ρ
!
U #σ#

πs &"

−"

ζ(η) ²ln rξ®ηr,
c
(ξ, η)´dη (rξr! 1), (4.8)

where

,
c
(ξ, η)¯ ln 04 sin ²"

%
π(ξ®η)´ cos ²"

%
π(ξη)´

ξ®η 1 .
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F 12. Poles of D(ω) in the upper half-plane for the first four shallow-cavity
operating stages (L¯ 2s).

The equation of motion of the sheet is obtained by equating the pressures (4.7) and
(4.8), and can be cast in the form

9σ#0σi
¥
¥ξ1

#: &"

−"

ζ(η) ²ln rξ®ηr,(ξ, η)´dη

σ#&"

−"

ζ(η) ²,
c
(ξ, η)®,(ξ, η)´dη¯®πs(p

+
®p

−
)}ρ

!
U # (rξr! 1). (4.9)

This equation is integrated with respect to the differential operator in the square
brackets to yield

&"

−"

ζ(η) ²ln rξ®ηr,(ξ, η)#(ξ, η)´dηλ
"
exp (iσ

"
ξ)λ

#
exp (iσ

#
ξ)¯*(ξ) (rξr! 1),

(4.10)

where *(ξ ) is known in terms of p³, the coefficients λ
"
, λ

#
are constants of integration,

σ
"
,σ

#
are the Kelvin–Helmholtz wavenumbers, defined as in (2.6), and

#(ξ, η)¯ "

#
σ&"

−"

²,
c
(µ, η)®,(µ, η)´ exp ²iσ(ξ®µ)®σrξ®µr´dµ.
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F 13. Predicted dependence of the shallow cavity Strouhal number fL}U on aspect ratio
b}L (L¯ 2s) at infinitesimal mean flow Mach number.

n
Theory: b}L¯ 5

fL}U

Ahuja & Mendoza
(1995)
fL}U

1 0±78 0±7
2 1±37 1±1
3 1±92 1±7
4 2±45 2±5

T 2

If we now set

ζ¯
iπQZ

A

2ωs
ζ
A
®

πp!

!

2ρ
!
ω#

ζ
D
, (4.11)

where Z
A

3 iκ
!
}2π®cot (κ

!
l )}κ

!
A is the acoustic impedance of the cavity entrance in

the absence of flow, then the dimensionless displacement ζ
A

is the solution of (4.10)
that satisfies the Kutta condition at ξ¯®1 for *(ξ )3 1, and ζ

D
is the corresponding

solution when *(ξ )¯ ξ®i}σ.
The numerical solutions of these equations can be used to evaluate the moments

Iα ¯&"

−"

ζα(η) dη, Mα ¯&"

−"

ηζα(η) dη (α¯D or A), (4.12)

whose values depend on the shape of the cavity and the hydrodynamic flow,
but are independent of fluid compressibility (i.e. c

!
). Using (4.4) and the relation

Q¯®iωb ! s
−s

ζ(y
"
) dy

"
, we can then evaluate

D¯ "

#
πbs

"

#
πbZ

A
[I

A
M

D
®I

D
M

A
]®M

D

1®"

#
πbZ

A
I
A

, Q¯
(iπbsp!

!
}2ρ

!
ω) I

D

1®"

#
πbZ

A
I
A

. (4.13)

These expressions are applicable for compressible motion within the cavity. When
κ
!
lU 0, the acoustic impedance Z

A
U¢, but all of the other components on the right-

hand sides of (4.13) are unchanged. It follows that QU 0, as expected, and that D tends
to a limiting value given by

D

"

#
πbs#

¯
[M

A
I
D
®M

D
I
A
]

I
A

3Γ «(ω)®i∆«(ω), (4.14)

where Γ « and ®∆« are non-dimensional real and imaginary parts of D.
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The variations of Γ « and ∆« with real values of σ3ωs}U are illustrated in figure
11(b) for a cavity aspect ratio b}L¯ 1. It may be verified that energy from the applied
pressure gradient p!

!
is absorbed by the mean flow when ∆«" 0, i.e. for σ less than

about 2±8. The motion is unstable, however, since D(ω) has poles in Im (ω)" 0 which
occur in distinct bands (analogous to the stages for aperture and edge tones) as b}L
varies. These bands are shown in figure 12 for the first four operating stages ; the real
and imaginary parts of σ increase approximately by "

#
π in passing from one stage to the

next, as for the aperture tones, and figure 13 shows that the Strouhal number
fL}U¯Re ²σ}π´ increases very slowly with aspect ratio for the first four stages, in
broad agreement with the observations of Ahuja & Mendoza (1995). Table 2 reveals
further an excellent numerical correspondence with Strouhal number estimates (in the
third column of the table) obtained by extrapolating to zero Mach number the
experimental data for shallow cavity tones presented by Ahuja & Mendoza in their
figure 2.2.

5. Conclusion

Fluid–structure interactions involving the incidence of shear layers and jets on edges
and corners are frequently sources of narrow-band acoustic radiation. This radiation
is conventionally associated with the formation of discrete vortices in the shear layer
or jet whose interaction with the structure generates an impulsive pressure that triggers
the formation of new vortices and completes a self-sustaining feedback cycle. In this
paper we have investigated idealized, linearized models of these interaction for shear
flows over wall apertures and cavities, and for the jet–edge interaction. The operating
stages of the oscillations have been identified with poles in the upper half of the
complex frequency plane of an appropriate impulse response function; for apertures
and the jet–edge interaction the response function coincides with the Rayleigh
conductivity of the ‘window’ spanned by the shear flow; for shallow wall cavities
(where there is no net volume flux through the mouth of the cavity) the response
function is the cavity drag coefficient.

We have argued that, the correct deduction from linear theory is that the real parts
of these complex poles correspond to the frequencies of possible self-sustaining cycles
of the fluid–structure interaction, generally leading to the production of sound of the
same frequency. Detailed predictions have been made of the Strouhal numbers of the
first four operating stages of rectangular wall apertures and shallow cavities. Very
limited experimental evidence exists to confirm these results, but the wall cavity
predictions are in good agreement with extrapolations to zero Mach number of data
from measurements in air. On the other hand, jet–edge interactions have been studied
extensively, and our Strouhal number predictions are in excellent agreement with data
derived from several experimental investigations. Additional support for the validity of
linear theory is provided by a comparison of predicted edge-tone Strouhal numbers
with those given by a nonlinear theory that depends on a single empirical constant.
Linear and nonlinear theories yield identical predictions for a single, fixed value of this
constant.

When the fluid–structure interaction takes place in the neighbourhood of a cavity
resonator, exemplified by the jet–edge interaction in a flue organ pipe, the instability
poles (which are shifted slightly because of the interaction with the resonator) are
augmented by a system of poles whose real parts are close to the resonance frequencies
of the cavity. The resonator will ‘ speak’ at one or more of these frequencies when the
pole lies in the upper frequency plane, a condition that can be satisfied provided the
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power supplied via the jet–edge interaction exceeds that lost by radiation from the open
ends and by other dissipative mechanisms within the cavity.

This work was sponsored by the Office of Naval Research under Grant N00014-95-
1-0318, administered by Dr Patrick L. Purtell. It is a pleasure to acknowledge the
benefit of discussions with Dr William K. Blake and Dr Maurice M. Sevik during the
preparation of the paper.
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